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ABSTRACT

In the western United States, water stored as mountain snowpack is a large percentage of the total water

needed to meet the region’s demands, and it is likely that, as the planet continues to warm, mountain

snowpack will decline. However, detecting such trends in the observational record is challenging because

snowpack is highly variable in both space and time. Here, a method for characterizing mountain snowpack

is developed that is based on fitting observed annual cycles of snow water equivalent (SWE) to a gamma-

distribution probability density function. A new method for spatially interpolating the distribution’s fitting

parameters to create a gridded climatology of SWE is also presented. Analysis of these data shows robust

trends in the shape of the annual cycle of snowpack in the western United States. Over the 1982–2017 water

years, the annual cycle of snowpack is becoming narrower and more Gaussian. A narrowing of the annual

cycle corresponds to a shrinking of the length of the winter season, primarily because snowpack melting is

commencing earlier in the water year. Because the annual cycle of snowpack at high elevations tends to be

more skewed than at lower elevations, a more Gaussian shape suggests that snowpack is becoming more

characteristic of that at lower elevations. Although no robust downward trends in annual-mean SWE are

found, robust trends in the shape of the SWE annual cycle have implications for regional water resources.

1. Introduction

In the western United States, the majority of pre-

cipitation falls during the wintertime (Mock 1996), and

consequently water supply is heavily dependent upon

the amount of precipitation that is stored in moun-

tain snowpack, specifically because snowmelt provides a

steady and gradual source of water runoff (Doesken and

Judson 1996). As such, year-to-year changes in snow

accumulation and melt can have major impacts on

water management since the timing of the availability of

water is crucial. Thus, the influence of climate change on

mountain snowpack is of great scientific and societal

interest.

Snowpack is heavily influenced by both precipitation

and temperature, and climate change may be reducing

mountain snowpack via reductions in wintertime fro-

zen (and potentially liquid) precipitation and early

melting (Mote et al. 2005; Barnett et al. 2008; Brown

and Robinson 2011; Cayan et al. 2016; Mote et al. 2018),

and such changes are expected to continue over the

twenty-first century (Diffenbaugh et al. 2013; Krasting

et al. 2013; Pierce and Cayan 2013; Mankin and

Diffenbaugh 2015). However, changes in snowpack are

not ubiquitous across the western United States. At

very high elevations, temperatures are sufficiently cold

that planetary warming likely has had little measurable

effect on snowpack, or at least on the seasonal maxi-

mum snowpack (Cayan 1996). Furthermore, natural

climate variability, such as the Pacific decadal oscilla-

tion or ENSO, affects snowpack in different regions of

the western United States in distinct forms (DeFlorio

et al. 2013; Hartmann 2015).

Changes in snowpack are often characterized by

measurements snow water equivalent (SWE) on 1 April

(e.g., Mote et al. 2018). Although arbitrary, 1April SWE

is a convenient parameter for analysis since there are

long-term measurements of SWE made on this date in

the western United States, and because many observing

sites reach their peak snowpack near this date (Cayan

1996; Bohr and Aguado 2001). However, changes in

1 April SWE are not clearly tied to a single physical

process. For example, an anomalously low value of

1 April SWE could result from a lack of winter season

precipitation or from anomalously warm temperatures.

Furthermore, a time series of SWEon any particular day

is inherently noisy and thus is not ideal for detection of

secular trends. In this paper, I present an alternativeCorresponding author: Amato Evan, aevan@ucsd.edu
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method for characterizing snowpack in the western

United States that utilizes SWE measurements for

the entire water year and that entails fitting gamma-

distribution probability density functions to themeasured

annual cycle of SWE. Trend analysis of these parameters

elucidates the ways in which the annual cycle of SWE has

changed over the historical record.

The remainder of this paper is organized as follows:

Data andmethods describes the data used (section 2a), a

method for fitting gamma-distribution probability den-

sity functions to the annual cycle of SWE and evaluating

the accuracy of these fits (section 2b), and a method

for spatially interpolating the station-level data onto an

equal-angle grid (section 2c), along with the corresponding

validation statistics (section 2d). Results contain an anal-

ysis of the trends in the gamma-distribution fitting pa-

rameters for the observational sites (section 3a) and for

the spatially interpolated data (section 3b). This is followed

by an analysis of the secular changes in the annual cycle

of SWE in the discussion section, as well as a comparison

with trends from 1 April SWE and other observational

metrics of mountain snowpack. The paper ends with a

conclusions section that puts the results into a broader

context and briefly discusses future work.

2. Data and methods

The data and methods section describes the data

used, a method to fit gamma distributions to annual time

series of SWE, and a method to spatially interpolate the

fitted, station-level SWE data onto an equal-angle grid.

Validation statistics are also presented.

a. Snow water equivalent data

Used in this analysis are daily observations of SWE

from the Natural Resources Conservation Service

Snowpack Telemetry (SNOTEL) network (Serreze et al.

1999). To reduce spurious results, daily data are removed

from the record if the absolute value of a single-day

change in SWE is greater than 20 cm, a threshold that was

chosen through visual analysis of SWE curves from a

large number of stations. Furthermore, if any station has

more than 30 days of missing data for the period of

November–April, the data for that water year are not

used. Last, data for a station, for the entire water year, are

not used if the measured SWE is zero during every day of

January, February, or March. This last criterion stems

from the fact that some stations appear to report SWE

values of zero when themeasurements should bemissing.

I also use SWE data from one station managed by the

California Department of Water Resources (CDWR;

QuakingAspen at 36.128N, 118.548W), because this is the

only station in the state’s network with continuous data

over the time period of interest (after quality control

criteria were applied). These data are included in this

analysis because this is the only station representing the

southern Sierra Nevada. For convenience, throughout

this paper I refer to ‘‘SNOTEL station’’ data rather than

‘‘SNOTEL and CDWR station’’ data.

Figure 1 is a plot of the number of SNOTEL sites

having continuous measurements as a function of water

year, through the 2017 water year. These are sites for

which the quality control criteria described above have

been applied. There is a large increase in the number of

stations with continuous data during 1978–82. Conse-

quently, to balance the need for long-term SWE mea-

surements with the need to have a large number of

stations in the analysis, only stations with continuous

data from the 1982–2017 water years are used for the

trend analysis. This equates to 408 stations having 36

years of continuous SWE measurements. The spatial

distribution of the resultant stations is shown in Fig. 2,

which includes the location of the one CDWR site.

Changing this analysis to include fewer years and more

stations did not clearly improve the spatial distribution

and representation of the SNOTEL sites to be used for

the trend analysis. SWE data from the stations not used

in the trend analysis are used for validation of the spatial

interpolation method that is described below.

b. SWE curve fitting

The annual cycle of SWE exhibits characteristics sim-

ilar to that of the probability distribution function of a

gamma distribution that is reflected about the ordinate

axis (Fig. 3). The gamma distribution is a continuous

FIG. 1. SNOTEL stations with continuous SWE measurements:

the number of SNOTEL sites having continuous data through the

2017 water year (ordinate) as a function of the first year of contin-

uous data (abscissa). The vertical red line demarks the 1982 water

year and the corresponding number of sites used in this study (432).
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distribution that is bounded on the left by zero and is

positively skewed. The PDF of the gammadistribution is

given by

f(x)5
(x/b)a21 exp(2x/b)

bG(a)
. (1)

The shape of the distribution is dependent upon the

so-called shape parameter a. For a. 1, the PDF begins

at the origin [f(0) 5 0]. At small a, the distribution is

more skewed to the left, and at larger a the distribution

function shifts to the right, eventually approaching a

Gaussian. Changes in the size parameter b squeeze the

distribution to the left (small b) or stretch the distribu-

tion to the right (large b). As the distribution is squeezed

to the left, the peak of the distribution increases;

stretching the distribution to the right reduces the peak

height. The gamma distribution has been utilized in

hydrological models to estimate the spatial distribu-

tion of SWE at the catchment level (see Skaugen and

Weltzien 2016 and references therein), which is distinct

from the usage presented here. A discussion of the

broader use of the gamma distribution in meteorology

can be found in Wilks (2011).

To fit Eq. (1) to the annual cycle of SWE, it is neces-

sary to shift the distribution by subtracting an offset z

from x. Physically, z represents the water yearday in the

spring on which SWE goes to zero. The term x 2 z

must also be multiplied by 21 to reflect the function

about the y axis so that SWE gradually increases during

the beginning of the water year and then quickly de-

clines in the spring. In addition, the entire distribution

function is multiplied by a scaling factorC. Themodified

version of Eq. (1), which will be fit to the annual cycles

of SWE, is

f(x)5C
[(z2 x)/b]a21 exp[(x2 z)/b]

bG(a)
, (2)

where f(x) is only valid for (z2 x) $ 0.

For each station and water year, z is defined as the first

day after the peak in SWE for which SWE drops to zero.

The remaining terms in Eq. (2) are then fitted to the

daily time series of SWE, again by water year and by

station, via the nonlinear least squares trust-region

method (Coleman and Li 1996), with lower bounds of

1 for all of the coefficients and upper bounds of 15 and

150 for a and b, respectively, with no upper bound forC.

The upper bounds were chosen based on visual in-

spection of the fits, and these bounds are utilized in less

than 0.03%of the fits for a and less than 0.01% of the fits

for b.

Figure 3 shows plots of daily mean SWE measure-

ments (thick continuous lines) and the fitted curves

(thick dashed line) for three randomly chosen SNOTEL

sites and years. For each of these sites the fitted gamma

distributions overestimate SWE during the first one to

two months of the water year; the tail of the gamma

FIG. 2. Spatial distribution of the SNOTEL sites used in this

study. These SNOTEL stations have continuous data from the

1982–2017 water years. The CDWR site used in this study is in-

dicated by the red circle.

FIG. 3. Examples of the gamma distribution fitted to annual time

series of SWE: three time series of SWE for the sites and water

years indicated in the legend (thin lines). The state containing each

SNOTEL site is also indicated in the legend. Also plotted are the

fitted gamma distributions for each site (thick dashed line). The

ordinate axis represents SWE (cm), and the abscissa is days after

1 Oct for each respective water year.
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distribution falls off more slowly than does the actual

SWE (for time in the reverse direction). Otherwise, the

gamma distributions provide a good fit to the SWE time

series; the correlation coefficient squared (r2) values

for all stations (Fig. 2), averaged by year, are greater

than 0.96, and the root-mean-square errors (RMSE) are

approximately 6% of the peak SWE value, where the

RMSE is only calculated over the time periods during

which the measured SWE is greater than zero.

Figure 4a is the annual cycle of SNOTEL SWE ob-

servations, averaged over all stations and years (blue),

and the corresponding mean annual cycle of the fitted

SNOTEL SWE data (red). As noted for the individual

stations (Fig. 3), the fitted curves overestimate SWE at

the beginning of the water year. The fitted SWE curves

also slightly underestimate the actual SWE around wa-

ter yearday 100, and overestimate the magnitude of the

peak SWE. The change in springtime SWE is very ac-

curately represented by the gamma distribution. A PDF

of the differences between the daily actual and fitted

SWE data show a small bias of20.29 cm, and a standard

deviation of 4.8 cm (Fig. 4b), which is approximately

10% of the maximum value of the long-term mean

SWE (Fig. 4a). Time series of annual-mean SWE from

SNOTEL observations and the fitted SNOTEL data are

practically identical (Fig. 4c).

This analysis was repeated by fitting a Weibull and

then a lognormal probability distribution function to the

SWE data. Themean and standard deviation of the PDF

of daily SWE errors (e.g., Fig. 4b) for the lognormal

distribution were21.1 and 6.8, respectively (not shown),

and the mean and standard deviation for the Weibull

distribution were 20.77 and 8.8, respectively (not

shown). Thus, among these three skewed distributions,

the gamma distribution provided a better fit to the

SWE data.

c. Spatial interpolation methods

The historical SNOTEL sites were identified as being

areas where the snowpack measurements correlated

well with April–July runoff volumes, and therefore the

sites are not necessarily representative of the regional

snowpack. Thus, in order to evaluate regional-scale

changes in seasonal SWE characteristics, it is useful to

spatially interpolate station data to an equal-area grid.

Here, spatial interpolation of the data is performed

using the hypsometric elevation regression method

(Fassnacht et al. 2003). The basis for this method is that

SWE is dependent upon temperature and precipitation,

and temperature and precipitation are in turn pro-

portional to elevation (Dingman 1981). As such, over a

limited geographic region, SWE observations can be

regressed onto station elevations in order to determine

the local SWE lapse rate, and this lapse rate can then be

use to estimate the SWE at any elevation in the domain

of interest. Similarly, long-term station-mean values of

a, b, and z are statistically significantly correlated with

station elevation (Figs. 5a,b,d). Although station-mean

C is not correlated with elevation (Fig. 5c) when con-

sidering smaller spatial scales (100 km), there is a posi-

tive and statistically significant correlation between

C and elevation (not shown).

The first step is to estimate the size of the domain over

which the spatial interpolation can be applied. To do so,

the decorrelation distance of the parameters used to fit

the gamma distributions to the SWE data must be de-

termined. This is the average distance at which the sta-

tions’ correlation coefficients of the annual time series

for each parameter fall to exp(21), shown in Fig. 6.

Here, the correlation coefficients for each parameter are

plotted as a function of distance between stations (box

and whiskers; black line), and the e-folding distance is

indicated by the red circles. The shape parameter a is

the most heterogeneous of the four terms used to fit the

gamma distributions, having a decorrelation distance of

45 km (Fig. 6a), whereas the size parameter b (345 km),

scale factor C (835 km), offset z (995 km) all have much

larger decorrelation distances (Figs. 6b–d). On the basis

of the distances in Fig. 6, the hypsometric elevation

FIG. 4. Comparison of measured and fitted SWE: (a) The long-

term mean annual cycle in SWE from SNOTEL and the fitted

SNOTEL data. (b) The difference (SNOTEL minus fitted

SNOTEL) in daily SWE, for only days for which SNOTEL SWE is

greater than zero. The distribution mean and standard deviation

are also given. (c) The annual-mean time series of SWE from

SNOTEL and the fitted SNOTEL data.
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regressions are applied over a distance of 100 km,

which is a compromise between the short decorrela-

tion distance of a and the longer distances of the other

parameters.

Spatial interpolation of the fitted SNOTEL data is

performed on a 0.258 3 0.258 equal-angle grid. At each

grid point, interpolation of the fitting parameters (a, b,

C, and z) is performed if there are at least five SNOTEL

stations within a horizontal distance of 100 km from the

center of the 0.258 3 0.258 cell. Within this subset of the

data, outliers are defined as any parameter with a value

outside 2 standard deviations of the sample mean and

are not included in the interpolation. Linear least

squares regression is used to find the rate of the pa-

rameter changes with height, where the parameter is the

dependent variable and the station height is the in-

dependent variable. However, since the distributions of

these parameters are bounded to the left by zero, the

elevation regression is conducted on the log of the pa-

rameter values. The regression is weighted by the in-

verse of the distance between each station and the

center of the grid cell.

Note that a major difference between this method and

Fassnacht et al. (2003) is that here the fitting parameters

are being interpolated rather than the actual SWE

values. Such an approach leads to fewer errors as the

interpolation is performed by season on the fitting pa-

rameters, rather than by day on the measured SWE;

daily values of SWE can contain missing or spurious

values, even after quality controls are applied. Fur-

thermore, I note that the methods of Fassnacht et al.

(2003) included an additional step of adding the inverse

distance weighted mean of the regression residuals to

the interpolated SWE values. I found that this step did

not improve the accuracy of the interpolated data and

thus did not include it here (not shown). Furthermore,

since the single CDWR station is not within 100 km of at

least four SNOTEL sites, there was not any spatially

interpolated data in Southern California.

d. Spatial interpolation validation

The spatial interpolation technique is validated using

data from 396 SNOTEL sites that are not included in the

analysis because their data record was not continuous

from 1982 to 2017 (Fig. 1). The spatial distribution of

these validation SNOTEL sites was similar to that

shown for the sites used to perform the spatial in-

terpolation (Fig. 2). Here, the gamma-distribution

fitting parameters from Eq. (2) of a, b, C, and z are

spatially interpolated to the validation SNOTEL sites

in a manner identical to that described in section 2c.

FIG. 5. Relationship between station elevation and gamma-

distribution fitting parameters, as shown by scatterplots of the long-

termmean station (a)a, (b)b, (c)C, and (d) z as a function of station

elevation. Also indicated are the r2 values from the correlation co-

efficients, which, except for C, are all statistically significant (signif-

icance level p , 0.05).

FIG. 6. Decorrelation spatial scales for the four parameters

used to fit the gamma distributions: the correlation coefficients r

(ordinate axes) as a function of distance (abscissa) for all of the

SNOTEL sites. Correlation coefficients are shown as box-and-

whisker plots as well as smoothed averaged continuous values

(black curves). The red circle indicates the decorrelation distance,

which is defined as the distance at which the correlation coefficient

falls to exp(21).
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These interpolated parameters are then used to re-

construct an SWE time series at each station.

In Fig. 7 are scatterplots of the fitting parameters for

the validation SNOTEL sites (‘‘fitted’’; abscissa), and

the spatially interpolated data (‘‘fitted1interpolated’’;

ordinate). Also indicated in each are the RMSE, bias,

and r2 value for the two data. Consistent with the de-

correlation distances (Fig. 6), r2 values for the inter-

polated a and b (Figs. 7a,b) are smaller than those for

C and z (Figs. 7c,d). The RMSEs for a, b, and C are all

on the order of 10% of their respective mean values,

whereas the RMSE for z is on the order of 1% of the

mean. The biases for all parameters are on the order of

1% of their respective means. Year-to-year changes in

the interpolated parameters are highly correlated with the

parameters fitted directly from the SNOTEL SWE data

where the r2 values for the station-averaged time series are

0.77 for a, 0.95 for b, and 0.97 for both C and z (Fig. 8).

The long-term mean annual cycle of SWE from the

fitted and interpolated data is very similar to that from

the actual SNOTEL observations (Fig. 9a), which is a

consequence of the relatively low biases in the fitting

parameters (Fig. 7). However, a histogram of the dif-

ferences in daily SWE from SNOTEL observations and

the fitted and interpolated data shows a wide distribution

of errors in SWE (Fig. 9b), where the 1-s error is ap-

proximately 21cm (the histogram in Fig. 9b was con-

structed using only days for which the measured SWE

was nonzero). The RMSE is dominated by errors asso-

ciated with the spatial interpolation technique; RMSE

errors from the gamma-distribution fitting step are a

factor of 4 smaller (4.8 cm; Fig. 4b). The time series of

annual-mean SWE from the validation-site SNOTEL

data and that from the fitted and interpolated data show a

high level of agreement (Fig. 9c; r2 5 0.97). Maps of the

biases and RMSEs, normalized by each station’s mean

SWE, do not exhibit spatial structure of the errors in the

fitted and interpolated SWE data (not shown).

3. Results

In the previous section, I described and validated the

method for fitting gamma distributions to annual time

series of SWE observations from SNOTEL, as well

as the method for spatially interpolating those fitting

parameters onto a 0.258 3 0.258 equal-angle grid. In this

section, the fitted data and the fitted and interpolated

data are in turn used to identify long-term trends in

western U.S. snowpack.

FIG. 7. Scatterplots of the gamma-distribution parameters from

the SNOTEL validation stations and from the spatially interpolated

data. Plotted are the station-mean a, b, C, and z from SNOTEL

sites that were not used to create the gridded SWE data (abscissa)

and the estimates for those same values from the gridded data,

interpolated to the horizontal location and elevation of the

SNOTEL sites (ordinate). Also given are the RMSE, bias, and

r2 values for the data in the plots.

FIG. 8. Time series of gamma fitting coefficients (blue) with those

from interpolation (red), for the SNOTEL validation sites. The

time series in each plot are of parameters averaged over all

SNOTEL stations that are used for validation of the interpolation

method. The r2 values for the time series are also given. Note that

for these plots the year-to-year changes in each parameter are re-

lated to changes in the numbers of stations with available data.
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a. Trends at SNOTEL sites

First, trends are calculated for the gamma-distribution

fitting parameters a, b, C, and z [Eq. (1)], but only for

the SNOTEL sites with continuous data from 1982 to

2017 (Figs. 1 and 2). Here, the linear 36-yr change in

each parameter is calculated for each SNOTEL station

bymultiplying the linear trend (yr21) by 36 yr. Statistical

significance of trends is calculated via a Mann–Kendall

test. Figure 10 shows histograms of the stations’ trends

for each parameter. Here, the percentage of stations

with positive, negative, and statistically significant

36-yr changes are indicated in the legend for each plot.

Figure 11 has maps showing the spatial distribution of

those trends among the SNOTEL stations. Figure 12

gives time series of the each parameter, averaged over

all stations, as well as a plot of the corresponding linear

trend. Also indicated in Fig. 12 are the 95% confidence

intervals on these linear trends.

A positive 36-yr change in a was calculated for a

majority of the SNOTEL sites used in the trend analysis

(Fig. 10a), with nearly 15% of those stations showing a

statistically significant change. The annual cycle of SWE

becomes more Gaussian with increasing a, and in gen-

eral a increases with station elevation (Fig. 5a). Thus, a

majority of SNOTEL sites are exhibiting a less skewed

annual cycle in SWE, or an annual cycle that is more

characteristic of lower-elevation conditions. The spatial

distribution of this upward trend in a shows that while

the upward trends are spread throughout the western

United States, the largest positive trends appear to be

most prevalent at SNOTEL sites in Utah, Colorado, and

Southern California (Fig. 11a). The trend in the annual-

mean time series of a, averaged over these SNOTEL

sites, also exhibits a positive upward trend (Fig. 12a),

where the corresponding 36-yr linear change of 0.25

(60.24) is statistically significant.

Next, 90% of the SNOTEL sites examined here have

a negative change in b, with 19% having a statistically

significant negative change (Fig. 10b). The annual cycle

of SWE is squeezed (in time) to the right with de-

creasing b, which can be interpreted as a reduction in

the length of time that SWE is greater than zero, or a

reduction in the length of the winter season. Conse-

quently, the length of the winter season is decreasing

for an overwhelming majority of these SNOTEL sites,

and this is the most consistent result among all of the

parameters in Fig. 10. The spatial distribution of the

trends in b shows negative values more or less uni-

formly spread among the SNOTEL sites, although the

trends are closer to zero, and in some cases positive, in the

region of southwestern Montana (Fig. 11b). The time

series of b, averaged over all stations, exhibits a statisti-

cally significant negative trend, having a 36-yr linear

change of 4.3 6 4.1 (Fig. 12b).

FIG. 9. As in Fig. 4 except that here measured SNOTEL data are

compared with the fitted and interpolated SNOTEL data. Only

validation SNOTEL sites are used to generate these plots.

FIG. 10. Histograms of trends in the fitting parameters at the

SNOTEL stations, giving linear 36-yr changes in the fitting pa-

rameters (a) a, (b) b, (c) C, and (d) z. The legends give the per-

centage of positive (blue), negative (orange), and statistically

significant (gray) linear changes for each parameter.
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Amajority of these SNOTEL sites (87%) also show a

negative change in C, with 9% of the stations having a

statistically significant negative change (Fig. 10c).

The spatial distribution of this change in C is heavily

weighted toward stations in the southwest portion of the

western United States, with positive trends in C to the

northeast (Fig. 11c). Consequently, although the time

series of C, averaged over the SNOTEL stations,

shows a negative trend, this linear change is not statis-

tically significant (Fig. 12c). As C is highly correlated

with annual-mean SWE, this result is consistent with the

annual-mean time series of SWE in Fig. 4b, where the

36-yr linear change is 24.0 6 4.8 cm.

Last, a majority of these SNOTEL sites (80%) also

show a reduction in z, although only 9% of these stations

exhibit a statistically significant change (Fig. 10d). By

themselves, decreases in z indicate that the SWE distri-

bution is shifting to the left (earlier in the water year), but

in conjunction with an increase in b (Fig. 10b) they sug-

gest that the winter season is being compressed, at least

partially because of an earlier spring snowmelt. The

spatial distribution of the trends in z is highly heteroge-

neous but in general can be characterized as negative

values in the southern half of the region and some posi-

tive values to the north (Fig. 11d). Similar toC, an annual

time series of z averaged over the SNOTEL sites does

not exhibit a statistically significant downward trend

(Fig. 12d). It is worth noting that the high 2015 value of

a and low 2015 values of b, C, and z (Fig. 12) are con-

sistent with the exceptionally low snowpack in the west-

ern states during this same year (Mote et al. 2016).

b. Trends in the interpolated data

One drawback to the trend analysis in section 3a is

the spatial heterogeneity of the SNOTEL sites. Thus,

I also present a trend analysis of the parameters a, b,

C, and z that have been spatially interpolated onto

the 0.258 3 0.258 equal-angle grid. In general, the

trends in the fitted and spatially interpolated parame-

ters are consistent with those from the fitted, but not

spatially interpolated, SNOTEL data. This similarity in

the trends suggests that although the SNOTEL stations

are not physically located in such a manner as to uni-

formly sample snowpack across the West, there is a

sufficient density of stations as to capture major re-

gional changes.

FIG. 11. Maps of the spatial distributions of 36-yr changes in the (a) a, (b) b, (c) C, and (d) z parameters used to fit

gamma distributions to the SNOTEL data.
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With regard to a, 83% of the spatially interpolated

data exhibit an upward trend in this parameter, with

18% having a statistically significant trend (Fig. 13a).

These positive trends in a are mainly contained to re-

gions in the southern half of the western United States,

with a broad area of trends that are much closer to zero

in the northeast (Fig. 14a). The mean time series of

a also exhibits a statistically significant upward trend

(Fig. 15a), where the 36-yr change is 20.6 (60.4),

consistent with the SNOTEL data (Fig. 10a). However,

in the spatially interpolated data, the trend magnitude is

twice as large as that for the fitted-only data, a result of

the larger positive values for the 2014 and 2017 water

years in the spatially interpolated data.

For b, 92% of the interpolated data have downward

trends, and 24% have trends that are statistically signifi-

cant (Fig. 13b), which is just slightly higher than that for

the fitted SNOTEL data (Fig. 10b). Also, similar to the

SNOTEL-only time series (Fig. 12b), the time series of

b for the interpolated data has a statistically significant

downward trend (not shown), and the 36-yr change

is 25.4 (63.8). These downward trends in b are wide-

spread throughout the domain (Fig. 14b), although there

are pockets where the trends are positive, most notably in

the Cascade Mountains (i.e., the western edge of Oregon

and Washington states, particularly along the border).

Also, similar to the SNOTEL-only time series (Fig. 12b),

the time series of b for the interpolated data has a sta-

tistically significant downward trend (Fig. 15b). However,

this trend is clearly resultant from anomalously high

values for b during the 1980s, and low values after 2011.

A majority (86%) of the interpolated data have

a negative trend in C, with 14% of the grid cells ex-

hibiting a statistically significant trend (Fig. 13c), which

is nearly identical to the case for the SNOTEL trends

(Fig. 10c). However, from Fig. 14c these trends aremuch

more uniform throughout the region, with exceptions

being most of Montana and again the coastal border

region between Oregon and Washington states. This is

slightly distinct from the SNOTEL trend map (Fig. 11c),

which exhibits a stronger gradient in the trends in the

northeast-to-southwest direction. Similar to the case

for the SNOTEL data (Fig. 12c), the time series of

C exhibits a downward trend that is not statistically

significant (Fig. 15c).

Similar to C, a majority (84%) of the spatially in-

terpolated data also exhibit a downward trend in z,

with 14%having a statistically significant trend (Fig. 13d),

which is slightly higher than the trends for the fitted

SNOTEL data (Fig. 10d). While the downward trends in

z are widespread throughout the domain, there are sev-

eral regions with positive trends in z, including eastern

Wyoming, eastern Colorado (near 1058Wand 408N), and

southwestern Oregon (Fig. 14d). Last, the annual-mean

time series of z has a downward trend that is not

FIG. 12. Time series (blue) and linear trends (red) of the pa-

rameters used to fit gamma distributions. All time series and trends

are averages over all SNOTEL stations having continuous data

from 1982 to 2017 (Figs. 1, 2). Also shown are the magnitudes and

95% confidence intervals (in parentheses) of the 36-yr change in

each parameter as based on the linear trend.

FIG. 13. As in Fig. 10 except that trends are calculated from the

fitted and interpolated data.
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statistically significant (Fig. 15d), as is the case for the

fitted SNOTEL time series (Fig. 12d).

4. Discussion

What is the benefit of analyzing the parameters of a

distribution used to fit the annual cycle of SWE, rather

than direct analysis of the SWE data itself? First, by

fitting gamma-distribution probability density func-

tions to the SWE annual cycles one is able to minimize

the influence of missing and spurious data on trend

analysis. This is a major advantage of the approach

since occasional missing data are common in the

SNOTEL record.

Next, the trends of the individual parameters can be

used to quantify secular changes in the shape of the an-

nual cycle of SWE. For example, plotted in Fig. 16a is the

annual cycle of SWE (blue line), calculated via Eq. (2),

using the long-termmean and spatially averaged values of

the parameters calculated from the fitted SNOTEL data

(Fig. 12). Also plotted are SWE annual cycles calculated

from the parameter values for the trend lines in Fig. 12,

for the 1982 and for 2017 water year (gray-shaded

region). The difference between these two annual cycles

(2017 minus 1982; red) represents the 36-yr linear change

in the annual cycle of SWE (red line), based on trends in

the fitting parameters. The net effect of the increase in a,

and the reductions in b, C, and z, is a large reduction in

SWE after water yearday 150 (27 February), which peaks

in magnitude (216cm) late in the season (water yearday

221, or 9 May).

A similar plot of the change in the SWE annual cycle,

but constructed using the trends in the fitted and spatially

interpolated SNOTEL data (Fig. 15), shows an identical

pattern in the linear change in SWE (Fig. 16b). Thus, the

trends in the shape of the annual cycle of SWE from the

fitted data (Fig. 16a) are unlikely to result from the spatial

heterogeneity of the SNOTEL sites. I note that SWE

values for the fitted and spatially interpolated SNOTEL

data are smaller than those for the fitted data because the

interpolated data encompassmore lower-elevation terrain.

While the long-term trend in annual-mean SWE is

not significant (Fig. 12c), this analysis of the seasonal

cycle (Fig. 16) shows that there is a general reduction in

SWE, but that this reduction is loaded onto the end of

the season, and is manifest as a systematically earlier

snowmelt. This result is consistent with an analysis of

the seasonality of trends in snowpack across the West

FIG. 14. As in Fig. 11 except that trends are calculated from the fitted and interpolated data.
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based on output from a hydrological model spanning

1915–2014 (Mote et al. 2018), with trends in streamflow

measurements (Cayan et al. 2001), and with studies

examining output from GCMs (Stewart et al. 2004;

Mankin and Diffenbaugh 2015; Gergel et al. 2017).

The unique value of the approach developed here is

that these results were determined from 36 years of

observational data.

In addition, analysis of these fitting parameters pro-

vides an opportunity to identify secular trends in the

annual cycle of SWE with fewer years of data than

would be needed for more typical metrics of snowpack.

For example, a time series of 1 April SWE, averaged

over SNOTEL station observations (Fig. 2) and over

1982–2017, exhibits a 36-yr trend of29.5 cm, which is not

statistically significant (Mann–Kendall p value is 0.23).

Thus, an examination of 1 April SWE from SNOTEL

measurements alone would not demonstrate a regional,

secular change in snowpack. However, the statistically

significant trends in the fitting parameters a and b do

demonstrate robust regional changes in snowpack over

the same time period (Figs. 12a,b). This result is broadly

consistent with another study of the trends in various

features describing mountain snowpack (Pierce and

Cayan 2013). Furthermore, the time series of 1 April

SWE (not shown) is highly correlated with that of C

(Fig. 4c; r value is 0.95). Thus, it is unlikely that there

would be a significant trend in 1 April SWE, because

there was not a statistically significant trend in C.

Trend analysis of other directly measured quantities

gives similar results. For example, a time series of the

number of days during which SWE . 0, calculated for

each SNOTEL station over 1982–2017 and then aver-

aged over all sites, can be interpreted as ameasure of the

length of the winter season. This time series (not shown)

exhibits a 36-yr linear trend of 26.0 days, which is also

not statistically significant (Mann–Kendall p value is

0.26). A SNOTEL time series of the water yearday when

SWE is at its maximum value, again calculated for each

site for 1982–2017 and then averaged over all stations,

can be interpreted as a time series of when seasonal

melting commences. The 36-yr linear change in this date

is 210.6 days (not shown) and is also not statistically

significant (Mann–Kendall p value is 0.09).

The purpose of these comparisons is not to suggest

that a trend analysis of the fitting parameters is neces-

sarily better than a trend analysis of directly measured

quantities like 1 April SWE. Rather, it suggests that a

trend analysis of the fitting parameters in Eq. (2)

FIG. 15. As in Fig. 12 except that the time series and trends are

calculated from the fitted and interpolated data.

FIG. 16. Time series of the 36-yr change in the annual cycle of

SWE as based on (a) the mean of the SNOTEL sites (Fig. 12) and

(b) the fitted and interpolated data (not shown): the mean SWE

(blue), the maximum and minimum SWE over a 36-yr time period

as based on the linear trends (gray-shaded region), and the dif-

ference between the maximum and minimum SWE (red), which

can also be interpreted as the 36-yr linear trend in SWE.
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provides a method for quantifying how the shape of the

seasonal cycle of SWE changes over time and that such

an analysis may lead to earlier detection of secular

trends in SWE.

5. Conclusions

In this paper, methods to fit the annual cycle of ob-

served SWE to a gamma-distribution probability density

function [Eq. (2)] and a method to spatially interpolate

these data at the regional scale are described. Then, a

trend analysis is conducted on the parameters used to fit

these probability density functions. From this trend

analysis, there is robust evidence that over the western

United States the annual cycle of SWE is growing less

skewed and is becoming narrower. This is a consistent

result seen in the data from the SNOTEL stations

(Figs. 10–12) and in the spatially interpolated data

(Figs. 13–15). Furthermore, the signs of the trends in

these four parameters all are characteristic of declining

snowpack. For example, lower-elevation SNOTEL sites

tend to have a more Gaussian annual cycle of SWE,

whereas higher elevation sites are more strongly skewed

(Fig. 5a). Thus, these trends suggest that over time the

annual cycle of SWE is becoming more characteristic of

lower elevations.

The positive trends in b and negative trends in z

suggest that the annual cycle is becoming narrower

or the winter season is shrinking in duration and that

spring snowmelt is happening earlier in the season.

The progressively earlier spring snowmelt will have

ramifications for regional water management (Hamlet

and Lettenmaier 1999; Barnett et al. 2005), as well as

regional wildfire activity (Westerling et al. 2006). This

result is also consistent with climate model simulations

of increasing CO2 (Lettenmaier and Gan 1990; Stewart

et al. 2004); thus, these results could be interpreted as

direct observational evidence that planetary warming is

currently affecting water resources in the West.

Themethodological approach described here is useful

because trends in the parameters a, b, and z describe

how the annual cycle of SWE is changing over time. It is

possible that analysis of these parameters allows for the

detection of secular changes in observed snowpack over

shorter periods when compared with other metrics like

1 April SWE. Furthermore, an analysis of the seasonal

cycle of SWE in climate models may be useful in terms

of model evaluation and to better understand historical

and future forced changes in snowpack. More rigorous

testing of this hypothesis is needed. Last, future work

will examine how the parameters a, b, and z are affected

by environmental features such as precipitation and

temperature as well as other meteorological processes.
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